CBSE Class 9 Mathemaics Important Questions Chapter 8 Quadrilaterals

1 Marks Quetions

1. A quadrilateral ABCD is a parallelogram if

- (a) AB = CD
- (b) AB || BC

(c)
$$\angle A = 60^{\circ}, \angle C = 60^{\circ}, \angle B = 120^{\circ}$$

(d) AB = AD

Ans. (c)
$$\angle A = 60^{\circ}, \angle C = 60^{\circ}, \angle B = 120^{\circ}$$

2. In figure, ABCD and AEFG are both parallelogram if $\angle C = 80^{\circ}$, then $\angle DGF$ is

- (a) 100°
- **(b)** 60°
- (c) 80°
- (d) 120°
- **Ans. (c)** 80⁰

- 3. In a square ABCD, the diagonals AC and BD bisects at O. Then $\triangle AOB$ is
- (a) acute angled
- (b) obtuse angled
- (c) equilateral
- (d) right angled

Ans. (d) right angled

- **4. ABCD** is a rhombus. If $\angle ACB = 30^{\circ}$, then $\angle ADB$ is
- (a) 30°
- **(b)** 120°
- (c) 60°
- (d) 45°

Ans. (c) 60°

5. In fig ABCD is a parallelogram. If $\angle DAB = 60^{\circ}$ and $\angle DBC = 80^{\circ}$ then $\angle CDB$ is

- (A)80°
- (B)60°
- (C)20°
- (D)40°

Ans. (D)40°
6. If the diagonals of a quadrilateral bisect each other, then the quadrilateral must be.
(a) Square
(b) Parallelogram
(c) Rhombus
(d) Rectangle
Ans. (b) Parallelogram
7. The diagonal AC and BD of quadrilateral ABCD are equal and are perpendicular bisector of each other then quadrilateral ABCD is a
(a) Kite
(b) Square
(c) Trapezium
(d) Rectangle
Ans. (b) Square
8. The quadrilateral formed by joining the mid points of the sides of a quadrilateral ABCD taken in order, is a rectangle if
(a) ABCD is a parallelogram
(b) ABCD is a rut angle
(c) Diagonals AC and BD are perpendicular
(d) AC=BD
Ans. (a) ABCD is a parallelogram

9. In the fig ABCD is a Parallelogram. The values of x and y are

- (a) 30, 35
- **(b)** 45, 30
- (c) 45, 45
- (d) 55, 35

Ans. (b) 45, 30

10. In fig if DE=8 cm and D is the mid-Point of AB, then the true statement is

- (a) AB=AC
- (b) **DE** | | **BC**
- (c) E is not mid-Point of AC
- (d) DE \neq BC

Ans. (c) E is not mid-Point of AC

11. The sides of a quadrilateral extended in order to form exterior angler. The sum of

these exterior angle is

- (a) 180°
- **(b)** 270°
- (c) 90°
- (d) 360°

Ans. (d) 360°

12. ABCD is rhombus with $\angle ABC = 40^{\circ}$. The measure of $\angle ACD$ is

- (a) 90°
- **(b)** 20°
- (c) 40°
- (d) 70°

Ans. b) 20°

13. In fig D is mid-point of AB and DE \parallel BC then AE is equal to

- (a) AD
- (b) EC
- (c) DB
- (d) BC

Ans. (b) EC

14. In fig D and E are mid-points of AB and AC respectively. The length of DE is

- (a) 8.2 cm
- (b) 5.1 cm
- (c) 4.9 cm
- (d) 4.1 cm

Ans. (d) 4.1 cm

- 15. A diagonal of a parallelogram divides it into
- (a) two congruent triangles
- (b) two similes triangles
- (c) two equilateral triangles
- (d) none of these

Ans. (a) two congruent triangles

- 16. A quadrilateral is a ______, if its opposite sides are equal:
- (a) Kite
- (b) trapezium

- (c) cyclic quadrilateral
- (d) parallelogram

Ans. (d) parallelogram

- 17. In the adjoining Fig. AB = AC. CD | | BA and AD is the bisector of $\angle PAC$ prove that
- (a) $\angle DAC = \angle BCA$ and

Ans. In $\triangle ABC$ AB = AC

 $\Rightarrow \angle BCA = \angle BAC$ [Opposite angle of equal sides are equal]

 $\angle CAD = \angle BCA + \angle ABC$ [Exterior angle]

 $\Rightarrow \angle PAC = \angle BCA$

Now $\angle PAC = \angle BCA$

 $\Rightarrow AP \parallel BC$

Also CD | | BA Given)

- : ABCD is a parallelogram
- (ii) ABCD is a parallelogram
- 18. Which of the following is not a parallelogram?

- (a) Rhombus
- (b) Square
- (c) Trapezium
- (d) Rectangle

Ans. (c) Trapezium

- 19. The sum of all the four angles of a quadrilateral is
- (a) 180^0
- (b) 360^0
- (c) 270^0
- (d) 90^0

Ans. (b) 360^0

20. In Fig ABCD is a rectangle P and Q are mid-points of AD and DC respectively. Then length of PQ is

- (a)5 cm
- (b) 4 cm
- (c) 2.5 cm

(d) 2 cm

Ans. (c) 2.5 cm

21. In Fig ABCD is a rhombus. Diagonals AC and BD intersect at O. E and F are mid points of AO and BO respectively. If AC = 16 cm and BD = 12 cm then EF is

- (a)10 cm
- (b) 5 cm
- (c) 8 cm
- (d) 6 cm

Ans. (b) 5 cm

CBSE Class 9 Mathemaics Important Questions Chapter 8 Quadrilaterals

2 Marks Quetions

1. The angles of a quadrilateral are in the ratio 3:5:9:13. Find all angles of the quadrilateral

Ans. Let in quadrilateral ABCD, $\angle A = 3x$, $\angle B = 5x$, $\angle C = 9x$ and $\angle D = 13x$.

Since, sum of all the angles of a quadrilateral = 360°

$$\therefore \angle A + \angle B + \angle C + \angle D = 360^{\circ} \Rightarrow 3x + 5x + 9x + 13x = 360^{\circ}$$

$$\Rightarrow 30x = 360^{\circ} \Rightarrow x = 12^{\circ}$$

Now
$$\angle A = 3x = 3 \times 12 = 36^{\circ}$$

$$\angle B = 5x = 5 \times 12 = 60^{\circ}$$

$$\angle C = 9x = 9 \times 12 = 108^{\circ}$$

And
$$\angle D = 13x = 13 \times 12 = 156^{\circ}$$

Hence angles of given quadrilateral are 36°, 60°, 108° and 156°.

2. If the diagonals of a parallelogram are equal, show that it is a rectangle.

Ans. Given: ABCD is a parallelogram with diagonal AC = diagonal BD

To prove: ABCD is a rectangle.

Proof: In triangles ABC and ABD,

AB = AB [Common]

AC = BD [Given]

AD = BC [opp. Sides of a || gm]

 \triangle ABC \cong \triangle BAD [By SSS congruency]

$$\Rightarrow$$
 \angle DAB = \angle CBA [By C.P.C.T.](i)

But
$$\angle$$
 DAB + \angle CBA = 180°(ii)

[\therefore AD || BC and AB cuts them, the sum of the interior angles of the same side of transversal is 180°]

From eq. (i) and (ii),

$$\angle$$
 DAB = \angle CBA = 90°

Hence ABCD is a rectangle.

- 3. Diagonal AC of a parallelogram ABCD bisects \angle A (See figure). Show that:
- (i) It bisects \angle C also.
- (ii) ABCD is a rhombus.

Ans. Diagonal AC bisects \angle A of the parallelogram ABCD.

(i) Since AB | DC and AC intersects them.

$$\therefore$$
 \angle 1 = \angle 3 [Alternate angles](i)

Similarly $\angle 2 = \angle 4$ (ii)

But _ 1 = _ 2 [Given](iii)

$$\therefore$$
 \angle 3 = \angle 4 [Using eq. (i), (ii) and (iii)]

Thus AC bisects \angle C.

(ii)
$$\angle 2 = \angle 3 = \angle 4 = \angle 1$$

 \Rightarrow AD = CD [Sides opposite to equal angles]

$$\therefore$$
 AB = CD = AD = BC

Hence ABCD is a rhombus.

4. ABCD is a parallelogram and AP and CQ are the perpendiculars from vertices A and C on its diagonal BD (See figure). Show that:

(i)
$$\triangle APB \cong \triangle CQD$$

(ii) AP = CQ

Ans. Given: ABCD is a parallelogram. AP \perp BD and CQ \perp BD

To prove: (i) \triangle APB \cong \triangle CQD (ii) AP = CQ

Proof: (i) In \triangle APB and \triangle CQD,

 $\angle 1 = \angle 2$ [Alternate interior angles]

AB = CD [Opposite sides of a parallelogram are equal]

$$\angle$$
 APB = \angle CQD = 90°

- \triangle APB $\cong \triangle$ CQD [By ASA Congruency]
- (ii) Since $\triangle APB \cong \triangle CQD$

$$AP = CQ [By C.P.C.T.]$$

5. ABCD is a quadrilateral in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively (See figure). AC is a diagonal. Show that:

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

- (ii) PQ = SR
- (iii) PQRS is a parallelogram.

Ans. In \triangle ABC, P is the mid-point of AB and Q is the mid-point of BC.

Then PQ || AC and PQ =
$$\frac{1}{2}$$
 AC

(i) In \triangle ACD, R is the mid-point of CD and S is the mid-point of AD.

Then SR
$$\parallel$$
 AC and SR = $\frac{1}{2}$ AC

(ii) Since PQ =
$$\frac{1}{2}$$
 AC and SR = $\frac{1}{2}$ AC

Therefore, PQ = SR

(iii) Since PQ || AC and SR || AC

Therefore, PQ | SR [two lines parallel to given line are parallel to each other]

Now PQ = SR and PQ \parallel SR

Therefore, PQRS is a parallelogram.

6. The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Ans. Suppose angles of quadrilateral ABCD are 3x, 5x, 9x, and 13x

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$
 [sum of angles of a quadrilateral is 360°]

$$30x = 360^{\circ}$$

$$x = 12^{0}$$

$$\therefore \angle A = 3x = 3 \times 12 = 36^{\circ}$$

$$\angle B = 5x = 5 \times 12 = 60^{\circ}$$

$$\angle C = 9x = 9 \times 12 = 108^{\circ}$$

$$\angle D = 13x = 13 \times 12 = 156^{\circ}$$

7. Show that each angle of a rectangle is a right angle.

Ans. We know that rectangle is a parallelogram whose one angle is right angle.

Let ABCD be a rectangle.

$$\angle A = 90^{\circ}$$

To prove
$$\angle B = \angle C = \angle D = 90^{\circ}$$

Proof: $AD \parallel BC$ and AB is transversal

$$\therefore \angle A + \angle B = 180^{\circ}$$

$$90^{\circ} + \angle B = 180^{\circ}$$

$$\angle B = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

$$\angle C = \angle A$$

$$\angle D = \angle B$$

8. A transversal cuts two parallel lines prove that the bisectors of the interior angles enclose a rectangle.

Ans. : $AB \parallel CD$ and EF cuts them at P and R.

$$\therefore \angle APR = \angle PRD$$
 [alternate interior angles]

$$\therefore \frac{1}{2} \angle APR = \frac{1}{2} \angle PRD$$

i.e.
$$\angle 1 = \angle 2$$

$$\therefore PQ \parallel RS$$
 [alternate]

9. Prove that diagonals of a rectangle are equal in length.

Ans. ABCD is a rectangle and AC and BD are diagonals.

To prove AC = BD

Proof: In \triangle DAB and CBA

AD = BC [In a rectangle opposite sides are equal]

$$\angle A = \angle B$$
 [90° each]

AB = AB common [common]

$$\therefore \Delta DAB \cong \Delta CAB \ [By SAS]$$

$$AC = BD \ [By \ CPCT]$$

10. If each pair of opposite sides of a quadrilateral is equal, then prove that it is a parallelogram.

Ans. Given A quadrilateral ABCD in which AB = DC and AD = BC

To prove: ABCD is a parallelogram

Construction: Join AC

<u>Proof:</u> In $\triangle ABC$ and $\triangle ADC$

AD=BC (Given)

AB=DC

AC=AC [common]

$$\therefore \triangle ABC \cong \triangle ADC$$
 [by SSS]

$$\therefore \angle BAC = \angle DAC[By CPCT]$$

 \therefore ABCD is a parallelogram.

Ans. ABCD is a parallelogram. The diagonals of a parallelogram bisect bisect each other

$$\therefore OD = OB$$

But
$$DX = BY$$
 [given]

$$\therefore OD - DX = OB - BY$$

Or OX=OY

Now in quadrilateral AYCX, the diagonals AC and XY bisect each other

: AYCX is a parallelogram.

In fig ABCD is a parallelogram and x, y are the points on the diagonal BD such that Dx < By show that AYCX is a parallelogram.

12. Show that the line segments joining the mid points of opposite sides of a quadrilateral bisect each other.

Ans. Given ABCD is quadrilateral E, F, G, H are mid points of the side AB, BC, CD and DA respectively

To prove: EG and HF bisect each other.

In $\triangle ABC$, E is mid-point of AB and F is mid-point of BC

$$\therefore EF \parallel AC \text{ And } EF = \frac{1}{2}AC.....(i)$$

Similarly,
$$HG \parallel AC$$
 and $HG = \frac{1}{2}AC.....(ii)$

From (i) and (ii), $EF \parallel HG$ and EF = GH

: *EFGH* is a parallelogram and EG and HF are its diagonals

Diagonals of a parallelogram bisect each other

Thus, EG and HF bisect each other.

13. ABCD is a rhombus show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$

Ans. ABCD is a rhombus

In $\triangle ABC$ and $\triangle ADC$

$$AB = AD$$
 [Sides of a rhombus]

$$BC = DC$$
 [Sides of a rhombus]

$$AC = AC$$
 [Common]

$$\therefore \triangle ABC \cong \triangle ADC$$
 [By SSS Congruency]

$$\therefore \angle CAB = \angle CAD$$
 And $\angle ACB = \angle ACD$

Hence AC bisects $\angle A$ as well as $\angle C$

Similarly, by joining B to D, we can prove that $\triangle ABD \cong \triangle CBD$

Hence BD bisects $\angle B$ as well as $\angle D$

14. In fig AD is a median of $\triangle ABC$, E is mid-Point of AD.BE produced meet AC at F.

Show that
$$AF = \frac{1}{3}AC$$

Ans. Let M is mid-Point of CF Join DM

 $\therefore DM \parallel BF$.

In $\Delta ADM_{\star}E$ is mid-Point of AD and

 $DM \parallel EF \Rightarrow F$ is mid-point of AM

$$\therefore AF = FM$$

FM=MC

$$AF = FM = MC$$

$$AC = AF + FM + MC$$

$$=AF+AF+AF$$

$$AF = 3AF$$

$$\Rightarrow AF = \frac{1}{3}AC$$

Hence Proved.

15. Prove that a quadrilateral is a parallelogram if the diagonals bisect each other.

Ans. ABCD is a quadrilateral in which diagonals AC and BD intersect each other at O

In $\triangle AOB$ and $\triangle DOC$

OA = OC [Given]

OB = OD [Given]

And $\angle AOB = \angle COD$ [Vertically apposite angle

 $\therefore \Delta AOB \cong \Delta COD$ [By SAS]

 $\therefore \angle OAB = \angle OCD$ [By C.P.C.T]

But this is Pair of alternate interior angles

∴ AB || CD

∴ AB || CD

Similarly AD | | BC

Quadrilateral ABCD is a Parallelogram.

16. In fig ABCD is a Parallelogram. AP and CQ are Perpendiculars from the Vertices A and C on diagonal BD.

Show that

(i)
$$\triangle APB \cong \triangle CQD$$

(ii)
$$AP = CQ$$

Ans. (I) in $\triangle APB$ and $\triangle CQD$

AB=DC [opposite sides of a Parallelogram]

$$\angle P = \angle Q$$
 [each 90°]

And
$$\angle ABP = \angle CDQ$$

$$\therefore \Delta APB \cong \Delta CQD \text{ [ASA]}$$

(II)
$$\therefore AP = CQ$$
 (By C.P.C.T)

17. ABCD is a Parallelogram E and F are the mid-Points of BC and AD respectively. Show that the segments BF and DE trisect the diagonal AC.

Ans. FD | | BE and FD=BE

BEDF Is a Parallelogram

EG | | BH and E is the mid-Point of BC

G is the mid-point of HC

Or HG=GC....(i)

Similarly AH=HG....(ii)

From (i) and (ii) we get

AH=HG=GC

Thus the segments BF and DE bisects the diagonal AC.

18. Prove that if each pair of apposite angles of a quadrilateral is equal, then it is a parallelogram.

Ans. Given: ABCD is a quadrilateral in which $\angle A = \angle C$ and $\angle B = \angle D$

To Prove: ABCD is a parallelogram

Proof: $\angle A = \angle C$ [Given]

$$\angle B = \angle D$$
 [Given]

$$\angle A + \angle B = \angle C + \angle D.....(i)$$

In quadrilateral. ABCD

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$(\angle A + \angle B) + (\angle A + \angle B) = 360^{\circ}$$
 [By....(i)]

$$\angle A + \angle B = 180^{\circ}$$

$$\angle A + \angle B = \angle C + \angle D = 180^{\circ}$$

These are sum of interior angles on the same side of transversal

$$\therefore AD \parallel BC$$
 and $AB \parallel DC$

ABCD is a parallelogram.

19. In Fig. ABCD is a trapezium in which AB \mid DC E is the mid-point of AD. A line through E is parallel to AB show that \mid bisects the side BC

Ans. Join AC

In $\triangle ADC$

E is mid-point of AD and EO | | DC

 \Box O is mid point of AC [A line segment joining the midpoint of one side of a Δ parallel to second side and bisect the third side]

In $\triangle ACB$

O is mid point of AC

OF | | AB _ F is mid point of BC

___ / Bisect BC

20. In Fig. ABCD is a parallelogram in which X and Y are the mid-points of the sides DC and AB respectively. Prove that AXCY is a parallelogram

Ans. In the given fig

ABCD is a parallelogram

 $\triangle AB \mid CD$ and AB = CD

$$\Rightarrow \frac{1}{2}AB \parallel \frac{1}{2}CD \text{ And } \frac{1}{2}AB = \frac{1}{2}CD$$

$$\Rightarrow XC \parallel AY \text{ And } XC = AY$$

[X and Y are mid-point of DC and AB respectively]

 \Rightarrow AXCY is a parallelogram

21. The angles of quadrilateral are in the ratio 3:5:10:12 Find all the angles of the quadrilateral.

Ans. Suppose angles of quadrilaterals are

3x, 5x, 10x, and 12x

$$\therefore \angle A = 3x$$
, $\angle B = 5x$, $\angle C = 10x$, $\angle D = 12x$

In a quadrilateral

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$3x + 5x + 10x + 12x = 360^{\circ}$$

30x = 360

$$x = \frac{360}{30} = 12$$

$$\angle A = 3 \times 12 = 36^{\circ}, \angle B = 5 \times 12 = 60^{\circ}$$

$$\angle C = 10 \times 12 = 120^{\circ}, \angle D = 12 \times 12 = 144^{\circ}$$

22. In fig D is mid-points of AB. P is on AC such that $PC = \frac{1}{2}AP$ and DE | |BP show that

$$AE = \frac{1}{3}AC$$

Ans. In ∆ABP

D is mid points of AB and DE \mid \mid BP

E is midpoint of AP

$$\triangle AE = EP \text{ also PC} = \frac{1}{2} AP$$

$$2PC = AP$$

$$2PC = 2AE$$

$$\Rightarrow$$
 PC = AE

$$AE = PE = PC$$

$$AC = AE + EP + PC$$

$$AC = AE + AE + AE$$

$$\Rightarrow$$
 AE = $\frac{1}{3}$ AC

Hence Proved.

23. Prove that the bisectors of the angles of a Parallelogram enclose a rectangle. It is given that adjacent sides of the parallelogram are unequal.

Ans. ABCD is a parallelogram

$$\therefore \angle A + \angle D = 180^{\circ}$$

or
$$\frac{1}{2}(\angle A + \angle D) = 90^{\circ}$$

Or $\angle APD = 90^{\circ}$ [Sum of angle of a $\Delta 180^{\circ}$]

$$\therefore \angle SPQ = \angle APD = 90^{\circ}$$

Similarly, $\angle QRS = 90^{\circ}$ and $\angle PQR = 90^{\circ}$

$$\angle P + \angle Q + \angle R + \angle S = 360^{\circ}$$

 $\therefore \angle PSR = 90^{\circ}$. Thus each angle of quadrilateral PQRS is 90°

Hence PQRS is a rectangle.

24. Prove that a quadrilateral is a parallelogram if a pair of its opposite sides is parallel and equal

Ans. Given: ABCD is a quadrilateral in which AB | |DC and BC | |AD.

To Prove: ABCD is a parallelogram

Construction: Join AC and BD intersect each other at O.

Proof: $\triangle AOB \cong \triangle DOC$ [By AAA

Because
$$\angle 1 = \angle 2$$

$$\angle 3 = \angle 4$$
 and $\angle 5 = \angle 6$

And BO=OD

- ABCD is a parallelogram
- Diagonals of a parallelogram bisect each other.

CBSE Class 9 Mathemaics Important Questions Chapter 8 Quadrilaterals

3 Marks Quetions

1. Show that is diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Ans. Given: Let ABCD is a quadrilateral.

Let its diagonal AC and BD bisect each other at right angle at point O.

$$OA = OC, OB = OD$$

And
$$\angle$$
 AOB = \angle BOC = \angle COD = \angle AOD = 90°

To prove: ABCD is a rhombus.

Proof: In $\,\underline{\Lambda}\,\text{AOD}$ and $\,\underline{\Lambda}\,\text{BOC}$,

OA = OC[Given]

OB = OD[Given]

 $\triangle \triangle AOD \cong \triangle COB$ [By SAS congruency]

⇒ AD = CB [By C.P.C.T.].....(i)

Again, In $_{\Lambda}$ AOB and $_{\Lambda}$ COD,

OA = OC[Given]

 \angle AOB = \angle COD[Given]

OB = OD[Given]

 $\triangle \triangle AOB \cong \triangle COD$ [By SAS congruency]

⇒ AD = CB[By C.P.C.T.]....(ii)

Now In \triangle AOD and \triangle BOC,

OA = OC[Given]

 \angle AOB = \angle BOC[Given]

OB = OB[Common]

 $\triangle \Delta AOB \cong \Delta COB$ [By SAS congruency]

⇒ AB = BC [By C.P.C.T.].....(iii)

From eq. (i), (ii) and (iii),

AD = BC = CD = AB

And the diagonals of quadrilateral ABCD bisect each other at right angle.

Therefore, ABCD is a rhombus.

2. Show that the diagonals of a square are equal and bisect each other at right angles.

Ans. Given: ABCD is a square. AC and BD are its diagonals bisect each other at point O.

To prove: AC = BD and AC \perp BD at point O.

Proof: In triangles ABC and BAD,

AB = AB[Common]

$$\angle ABC = \angle BAD = 90^{\circ}$$

BC = AD [Sides of a square]

 $\Delta ABC \cong \Delta BAD$ [By SAS congruency]

 \Rightarrow AC = BD [By C.P.C.T.] Hence proved.

Now in triangles AOB and AOD,

AO = AO[Common]

AB = AD[Sides of a square]

OB = OD[Diagonals of a square bisect each other]

 $\triangle \triangle AOB \cong \triangle AOD[By SSS congruency]$

 \angle AOB = \angle AOD[By C.P.C.T.]

But \angle AOB + \angle AOD = 180° [Linear pair]

 \therefore \angle AOB = \angle AOD = 90°

 \Rightarrow OA \perp BD or AC \perp BD

Hence proved.

3. ABCD is a rhombus. Show that the diagonal AC bisects \angle A as well as \angle C and diagonal BD bisects \angle B as well as \angle D.

Ans. ABCD is a rhombus. Therefore, AB = BC = CD = AD

Let O be the point of bisection of diagonals.

$$OA = OC$$
 and $OB = OD$

In Δ AOB and Δ AOD,

OA = OA[Common]

AB = AD[Equal sides of rhombus]

OB = OD(diagonals of rhombus bisect each other]

 $\triangle AOB \cong \triangle AOD[By SSS congruency]$

$$\Rightarrow$$
 \angle OAD = \angle OAB[By C.P.C.T.]

$$\Rightarrow$$
 OA bisects \angle A.....(i)

Similarly Δ BOC $\cong \Delta$ DOC[By SSS congruency]

$$\Rightarrow$$
 \angle OCB = \angle OCD[By C.P.C.T.]

$$\Rightarrow$$
 OC bisects \angle C....(ii)

From eq. (i) and (ii), we can say that diagonal AC bisects \angle A and \angle C.

Now in Δ AOB and Δ BOC,

OB = OB[Common]

AB = BC[Equal sides of rhombus]

OA = OC(diagonals of rhombus bisect each other]

 $\triangle \Delta AOB \cong \Delta COB[By SSS congruency]$

$$\Rightarrow$$
 \angle OBA = \angle OBC[By C.P.C.T.]

⇒ OB bisects ∠B.....(iii)

Similarly \triangle AOD \cong \triangle COD[By SSS congruency]

$$\Rightarrow$$
 \angle ODA = \angle ODC[By C.P.C.T.]

$$\Rightarrow$$
 BD bisects \angle D.....(iv)

From eq. (iii) and (iv), we can say that diagonal BD bisects \angle B and \angle D

4. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (See figure). Show that:

(i)
$$\triangle$$
 APD \cong \triangle CQB

(ii)
$$AP = CQ$$

(iii)
$$_{\Delta}$$
 AQB $_{\cong}$ $_{\Delta}$ CPD

(iv)
$$AQ = CP$$

(v) APCQ is a parallelogram.

Ans. (i)In \triangle APD and \triangle CQB,

DP = BQ[Given]

 \angle ADP = \angle QBC[Alternate angles (AD || BC and BD is transversal)]

AD = CB[Opposite sides of parallelogram]

 $\therefore \triangle APD \cong \triangle CQB[By SAS congruency]$

(ii) Since \triangle APD \cong \triangle CQB

 \Rightarrow AP = CQ[By C.P.C.T.]

(iii) In \triangle AQB and \triangle CPD,

BQ = DP[Given]

 \angle ABQ = \angle PDC[Alternate angles (AB|| CD and BD is transversal)]

AB = CD[Opposite sides of parallelogram]

 $\triangle AQB \cong \triangle CPD[By SAS congruency]$

(iv) Since \triangle AQB \cong \triangle CPD

 \Rightarrow AQ = CP[By C.P.C.T.]

(v) In quadrilateral APCQ,

AP = CQ[proved in part (i)]

AQ = CP[proved in part (iv)]

Since opposite sides of quadrilateral APCQ are equal.

Hence APCQ is a parallelogram.

5. ABCD is a rhombus and P, Q, R, S are mid-points of AB, BC, CD and DA respectively. Prove that quadrilateral PQRS is a rectangle.

Ans. Given: P, Q, R and S are the mid-points of respective sides AB, BC, CD and DA of rhombus. PQ, QR, RS and SP are joined.

To prove: PQRS is a rectangle.

Construction: Join A and C.

Proof: In $\ _{\triangle}$ ABC, P is the mid-point of AB and Q is the mid-point of BC.

PQ || AC and PQ =
$$\frac{1}{2}$$
 AC(i)

In Δ ADC, R is the mid-point of CD and S is the mid-point of AD.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC....(ii)

From eq. (i) and (ii), $PQ \parallel SR$ and PQ = SR

PQRS is a parallelogram.

Now ABCD is a rhombus. [Given]

$$AB = BC$$

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} BC \Rightarrow PB = BQ$$

 \therefore \angle 1 = \angle 2[Angles opposite to equal sides are equal]

Now in triangles APS and CQR, we have,

AP = CQ[P and Q are the mid-points of AB and BC and AB = BC]

Similarly AS = CR and PS = QR[Opposite sides of a parallelogram]

 $\triangle \Delta$ APS $\cong \Delta$ CQR[By SSS congreuancy]

$$\Rightarrow$$
 \angle 3 = \angle 4[By C.P.C.T.]

Now we have $\angle 1 + \angle SPQ + \angle 3 = 180^{\circ}$

And $\angle 2 + \angle PQR + \angle 4 = 180^{\circ}$ [Linear pairs]

$$\therefore \angle 1 + \angle SPQ + \angle 3 = \angle 2 + \angle PQR + \angle 4$$

Since $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ [Proved above]

Now PQRS is a parallelogram [Proved above]

$$\therefore$$
 \angle SPQ + \angle PQR = 180°....(iv)[Interior angles]

Using eq. (iii) and (iv),

$$\angle$$
 SPQ + \angle SPQ = 180° \Rightarrow 2 \angle SPQ = 180°

$$\Rightarrow$$
 \angle SPQ = 90°

Hence PQRS is a rectangle.

6. ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Ans. Given: A rectangle ABCD in which P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.

To prove: PQRS is a rhombus.

Construction: Join AC.

Proof: In Δ ABC, P and Q are the mid-points of sides AB, BC respectively.

PQ || AC and PQ =
$$\frac{1}{2}$$
 AC....(i)

In $\underline{\Lambda}$ ADC, R and S are the mid-points of sides CD, AD respectively.

$$SR \parallel AC$$
 and $SR = \frac{1}{2} AC$(ii)

From eq. (i) and (ii), PQ \parallel SR and PQ = SR.....(iii)

PQRS is a parallelogram.

Now ABCD is a rectangle.[Given]

$$AD = BC$$

$$\Rightarrow \frac{1}{2} AD = \frac{1}{2} BC \Rightarrow AS = BQ....(iv)$$

In triangles APS and BPQ,

AP = BP[P is the mid-point of AB]

$$\angle$$
 PAS = \angle PBQ[Each 90°]

And AS = BQ[From eq. (iv)]

 $\triangle \Delta$ APS $\cong \Delta$ BPQ[By SAS congruency]

$$\Rightarrow$$
 PS = PQ[By C.P.C.T.]....(v)

From eq. (iii) and (v), we get that PQRS is a parallelogram.

$$\Rightarrow$$
 PS = PQ

⇒ Two adjacent sides are equal.

Hence, PQRS is a rhombus.

7. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (See figure). Show that the line segments AF and EC trisect the diagonal BD.

Ans. Since E and F are the mid-points of AB and CD respectively.

: AE =
$$\frac{1}{2}$$
 AB and CF = $\frac{1}{2}$ CD....(i)

But ABCD is a parallelogram.

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} CD \text{ and } AB \parallel DC$$

$$\Rightarrow$$
 AE = FC and AE || FC[From eq. (i)]

AECF is a parallelogram.

$$\Rightarrow$$
 FA || CE \Rightarrow FP || CQ[FP is a part of FA and CQ is a part of CE](ii)

Since the segment drawn through the mid-point of one side of a triangle and parallel to the other side bisects the third side.

In \triangle DCQ, F is the mid-point of CD and \Rightarrow FP \parallel CQ

P is the mid-point of DQ.

Similarly, In \triangle ABP, E is the mid-point of AB and \Rightarrow EQ \parallel AP

. Q is the mid-point of BP.

From eq. (iii) and (iv),

$$DP = PQ = BQ....(v)$$

Now
$$BD = BQ + PQ + DP = BQ + BQ + BQ = 3BQ$$

$$\Rightarrow$$
 BQ = $\frac{1}{3}$ BD....(vi)

From eq. (v) and (vi),

$$DP = PQ = BQ = \frac{1}{3} BD$$

 \Rightarrow Points P and Q trisects BD.

So AF and CE trisects BD.

8. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.

Ans. (i) In \triangle ABC, M is the mid-point of AB[Given]

MD || BC

__AD = DC[Converse of mid-point theorem]

Thus D is the mid-point of AC.

(ii) $l \parallel$ BC (given) consider AC as a transversal.

 \therefore \angle 1 = \angle C[Corresponding angles]

Thus MD \perp AC.

(iii) In $_{\Delta}$ AMD and $_{\Delta}$ CMD,

AD = DC[proved above]

$$\angle 1 = \angle 2 = 90^{\circ}$$
 [proved above]

MD = MD[common]

 $\triangle \Delta$ AMD $\cong \Delta$ CMD[By SAS congruency]

Given that M is the mid-point of AB.

$$AM = \frac{1}{2} AB....(ii)$$

From eq. (i) and (ii),

$$CM = AM = \frac{1}{2}AB$$

9. In a parallelogram ABCD, bisectors of adjacent angles A and B intersect each other at P. prove that $\angle APB = 90^\circ$

Ans. Given ABCD is a parallelogram is and bisectors of $\angle A$ and $\angle B$ intersect each other at P.

To prove $\angle APB = 90^{\circ}$

Proof:

$$\angle 1 + \angle 2 = \frac{1}{2} \angle A + \frac{1}{2} \angle B$$

$$= \frac{1}{2} \left(\angle A + \angle B \right) \longrightarrow (i)$$

But ABCD is a parallelogram and AD \parallel BC

$$A + \angle B = 180^{\circ}$$

$$\therefore \angle 1 + \angle 2 = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$$

In $\triangle APB$

$$\angle 1 + \angle 2 + \angle APB = 180^{\circ}$$

$$90^{\circ} + \angle APB = 180^{\circ}$$

$$\angle APB = 90^{\circ}$$

Hence Proved

- 10. In figure diagonal AC of parallelogram ABCD bisects $\angle A$ show that
- (i) if bisects $\angle C$

ABCD is a rhombus

Ans.(i) AB || DC and AC is transversal

 $\therefore \angle 1 = \angle 2$ (Alternate angles)

And $\angle 3 = \angle 4$ (Alternate angles)

But, $\angle 1 = \angle 3$

∴ AC bi sec sts ∠C

(ii) In $\triangle ABC$ and $\triangle ADC$

AC=AC [common]

$$\angle 1 = \angle 3$$
 [given]

$$\angle 2 = \angle 4$$
 [proved]

$$\triangle ABC \cong \triangle ADC$$

$$\therefore AB = AD$$
 [By CPCT]

:. ABCD is a rhombus

11. In figure ABCD is a parallelogram. AX and CY bisects angles A and C. prove that AYCX is a parallelogram.

Ans. Given in a parallelogram AX and CY bisects $\angle A$ and $\angle C$ respectively and we have to show that AYCX in a parallelogram.

In $\triangle ADX$ and $\triangle CBY$

 $\angle D = \angle B$...(i) [opposite angles of parallelogram]

$$\angle DAX = \frac{1}{2} \angle A$$
 [Given] ...(ii)

And
$$\angle BCY = \frac{1}{2} \angle C$$
 [give](iii)

But $\angle A = \angle C$

By (2) and (3), we get

$$\angle DAX = \angle BCY \rightarrow (iv)$$

Also, AD = BC [opposite sides of parallelogram](v)

From (i), (iv) and (v), we get

$$\Delta ADX \cong \Delta CBY$$
 [By ASA]

$$\therefore DX = BY \quad [CPCT]$$

But, AB =CD [opposite sides of parallelogram]

AB-BY=CD-DX

Or

Ay=CX

But $AY \parallel XC \ [\because ABCD \ is \ a \parallel gm]$

: AYCX is a parallelogram

12. Prove that the line segment joining the mid-points of two sides of a triangle is parallel to the third side.

Ans. Given \triangle ABC in which E and F are mid points of side AB and AC respectively.

To prove: EF | | BC

Construction: Produce EF to D such that EF = FD. Join CD

Proof: In $\triangle AEF$ and $\triangle CDF$

AF=FC[::F is mid-point of AC]

 $\angle 1 = \angle 2$ [vertically opposite angles]

EF=FD [By construction]

 $\therefore \Delta AEF \cong \Delta CDF \ [By SAS]$

And $\therefore AE = CD$ [By CPCT]

AE= BE[: E is the mid-point]

And $\therefore BE = cd$

 $AB \parallel CD$ [:. $\angle BAC = \angle ACD$]

:. BCDE is a parallelog ram

EF || BC Henceproved

13. Prove that a quadrilateral is a rhombus if its diagonals bisect each other at right angles.

Ans. Given ABCD is a quadrilateral diagonals AC and BD bisect each other at O at right angles

To Prove: ABCD is a rhombus

Proof: : diagonals AC and BD bisect each other at O

$$\therefore OA = OC, OB = OD \text{ And } \angle 1 = \angle 2 = \angle 3 = 90^{\circ}$$

Now In $\triangle BOA$ And $\triangle BOC$

OA = OC Given

OB = OB [Common]

And $\angle 1 = \angle 2 = 90^{\circ}$ (Given)

$$\therefore \Delta BOA = \Delta BOC \text{ (SAS)}$$

$$\therefore BA = BC \text{ (C.P.C.T.)}$$

Similarly, BC=CD, CD=DA and DA=AB,

Hence, ABCD is a rhombus.

14. Prove that the straight line joining the mid points of the diagonals of a trapezium is parallel to the parallel sides.

Ans. Given a trapezium ABCD in which $AB \parallel DC$ and M,N are the mid Points of the diagonals AC and BD.

We need to prove that $MN \parallel AB \parallel DC$

Join CN and let it meet AB at E

Now in ΔCDN and ΔEBN

 $\angle DCN = \angle BEN$ [Alternate angles]

 $\angle CDN = \angle BEN$ [Alternate angles]

And DN = BN [given]

$$\therefore \Delta CDN \cong \Delta EBN$$
 [ASA]

$$\therefore$$
 $CN = EN$ [By C.P.C.T]

Now in $\triangle ACE$, M and N are the mid points of the sides AC and CE respectively.

$$\therefore MN \parallel AE \text{ or } MN \parallel AB$$

Also
$$AB \parallel DC$$

15. In fig $\angle B$ is a right angle in $\triangle ABC.D$ is the mid-point of $AC.DE \parallel AB$ intersects BC at E. show that

- (i) E is the mid-point of BC
- (ii) DE \perp BC
- (ii) BD = AD

Ans. Proof: $DE \parallel AB$ and D is mid points of AC

In ΔDCE and ΔDBE

CE=BE

DE= DE

And $\angle DEC = \angle DEB = 90^{\circ}$

$$\triangle DCE = \Delta DBE$$

$$\therefore \Delta DCE \cong \Delta DBE$$

$$\therefore CD = BD$$

16. ABC is a triangle and through vertices A, B and C lines are drawn parallel to BC, AC and AB respectively intersecting at D, E and F. prove that perimeter of ΔDEF is double the perimeter of ΔABC .

Ans. :: BCAF Is a parallelogram

$$BC = AF$$

∴ ABCE Is a parallelogram

$$BC = AE$$

$$AF + AE = 2BC$$

Or
$$EF = 2BC$$

Similarly, ED = 2AB and FD = 2AC

$$\therefore \text{Perimeter of } \Delta ABC = AB + BC + AC$$

Perimeter of $\Delta DEF = DE + EF + DF$

$$= 2AB+2BC+2AC$$

$$= 2[AB+BC+AC]$$

= 2 Perimeter of $\triangle ABC$

Hence Proved.

- 17. In fig ABCD is a quadrilateral P, Q, R and S are the mid Points of the sides AB, BC, CD and DA, AC is diagonal. Show that
- (i) **SR** | | **AC**
- (ii) PQ=SR
- (iii) PQRS is a parallelogram
- (iv) PR and SQ bisect each other

Ans. In \triangle ABC, P and Q are the mid-points of the sides AB and BC respectively

- (i) $PQ \mid AC$ and $PQ = \frac{1}{2}AC$
- (ii) Similarly SR | | AC and SR = $\frac{1}{2}$ AC
- PQ||SR and PQ=SR
- (iii) Hence PQRS is a Parallelogram.
- (iv) PR and SQ bisect each other.
- 18. In $\triangle ABC$, D, E, F are respectively the mid-Points of sides AB,DC and CA. show that

$\triangle ABC$ is divided into four congruent triangles by Joining D,E,F.

Ans. D and E are mid-Points of sides AB and BC of Λ ABC

 $DE \mid AC$ A line segment joining the mid-Point of any two sides of a triangle parallel to third side}

Similarly, DF | BC and EF | AB

__ADEF, BDEF and DFCE are all Parallelograms.

DE is diagonal of Parallelogram BDFE

$$\therefore \Delta BDE \cong \Delta FED$$

Similarly, $\Lambda DAF \cong \Lambda FED$

And $\Delta EFC \cong \Delta FED$

So all triangles are congruent

- 19. ABCD is a Parallelogram is which P and Q are mid-points of opposite sides AB and CD. If AQ intersect DP at S BQ intersects CP at R, show that
- (i) APCQ is a Parallelogram
- (ii) DPBQ is a parallelogram
- (iv) PSQR is a parallelogram

Ans. (i) In quadrilateral APCQ

$$AP = \frac{1}{2} AB$$
, $CQ = \frac{1}{2} CD$ (Given)

Also AB= CD

Therefore, APCQ is a parallelogram

[It any two sides of a quadrilateral equal and parallel then quad is a parallelogram]

- (ii) Similarly, quadrilateral DPBQ is a Parallelogram because DQ | | PB and DQ=PB
- (iii) In quadrilateral PSQR,

SP | | QR [SP is a part of DP and QR is a Part of QB]

Similarly, SQ | | PR

So. PSQR is also parallelogram.

20. l, m, n are three parallel lines intersected by transversals P and q such that l, m and n cut off equal intercepts AB and BC on P In fig Show that l, m, n cut off equal intercepts DE and EF on q also.

Ans. In fig l, m, n are 3 parallel lines intersected by two transversal P and Q.

To Prove DE=EF

Proof: In $\triangle ACF$

B is mid-point of AC

And BG | | CF

G is mid-point of AF [By mid-point theorem]

Now In $\triangle AFD$

G is mid-point of AF and GE | | AD

E is mid-point of FD [By mid-point theorem]

_ DE=EF

Hence Proved.

21. ABCD is a parallelogram in which E is mid-point of AD. DF \mid EB meeting AB produced at F and BC at L prove that DF = 2DL

Ans. In $\triangle AFD$

E is mid-point of AD (Given)

BE | | DF (Given)

__By converse of mid-point theorem B is mid-point of AF

$$\therefore AB = BF....(i)$$

ABCD is parallelogram

$$\therefore AB = CD.....(ii)$$

From (i) and (ii)

CD = BF

Consider ΔDLC and ΔFLB

DC = FB [Proved above]

 $\angle DCL = \angle FBL$ [Alternate angles]

 $\angle DLC = \angle FLB$ [Vertically opposite angles]

 $\Delta DLC = \Delta FLB$ [ASA]

__DL=LF

__DF=2DL

22. PQRS is a rhombus if $\angle P = 65^{\circ}$ find $\angle RSQ$

Ans. $\angle R = \angle P = 65^{\circ}$ [opposite angles of a parallelogram are equal]

Let $\angle RSQ = x^{\circ}$

In ΔRSQ we have RS=RQ

 $\angle RQS = \angle RSQ = x^{\circ}$ [opposite Sides of equal angles are equal]

In ΔRSQ

$$\angle S + \angle Q + \angle R = 180^{\circ}$$
 [By angle sum property]

$$x^{\circ} + x^{\circ} + 65^{\circ} = 180^{\circ}$$

$$2x^{\circ} = 180^{\circ} - 65^{\circ}$$

$$2x^{\circ} = 115^{\circ}$$

$$x = \frac{115}{2} = 57.5^{\circ}$$

23. ABCD is a trapezium in which AB | | CD and AD = BC show that

(i)
$$\angle A = \angle B$$

(ii)
$$\angle C = \angle D$$

(iii)
$$\triangle ABC \cong \triangle BAD$$

Ans. Produce AB and Draw a line Parallel to DA meeting at E

::AD||EC

 $\angle 1 + \angle 3 = 180^{\circ}$ (i) [Sum of interior angles on the some side of transversal is 180°]

In ΔBEC

BC=CE (given)

 $\therefore \angle 3 = \angle 4$ (2) [in a \triangle equal side to opposite angles are equal]

$$\angle 2 + \angle 4 = 180^{\circ} \dots (3)$$

By (i) and (3)

$$\angle 1 + \angle 3 = \angle 2 + \angle 4$$

$$\angle 3 = \angle 4$$

(i)
$$\therefore \angle A = \angle B$$

$$\angle D + \angle 6 + \angle 5 = 180^{\circ}.....(i)$$

$$AE \parallel DC$$

$$\angle 6 + \angle 5 + \angle 3 = 180^{\circ}$$
.....(ii)

$$\angle D + \angle 6 + \angle 5 = \angle 6 + \angle 5 + \angle 3$$

$$\angle D = \angle 3 = \angle 4$$

(iii) In ∧ABC and ∧BAD

AB=AB [common]

$$\angle 1 = \angle 2$$
 [Proved above]

AD=BC [given]

$$\therefore \Delta ABC \cong \Delta BAD$$
 [By SAS]

24. Show that diagonals of a rhombus are perpendicular to each other.

Ans. Given: A rhombus ABCD whose diagonals AC and BD intersect at a Point O

To Prove: $\angle BOC = \angle DOC = \angle AOD = \angle AOB = 90^{\circ}$

Proof: clearly ABCD is a Parallelogram in which

AB=BC=CD=DA

We know that diagonals of a Parallelogram bisect each other

OA=OC and OB=OD

Now in \triangle BOC and \triangle DOC, we have

OB=OD

BC=DC

OC=OC

 $\Delta BOC \cong \Delta DOC$ [By SSS]

 $\therefore \angle BOC = \angle DOC$ [By C.P.C.T]

But $\angle BOC + \angle DOC = 180^{\circ}$: $\angle BOC = \angle DOC = 90^{\circ}$

Similarly, $\angle AOB = \angle AOD = 90^{\circ}$

Hence diagonals of a rhombus bisect each other at 90°

25. Prove that the diagonals of a rhombus bisect each other at right angles

Ans. We are given a rhombus ABCD whose diagonals AC and BD intersect each other at O.

We need to prove that OA=OC, OB=OD and $\angle AOB = 90^{\circ}$

In $\triangle AOB$ and $\triangle COD$

AB=CD [Sides of rhombus]

 $\angle AOB = \angle COD$ [vertically opposite angles]

And $\angle ABO = \angle CDO$ [Alternate angles]

 $\triangle \triangle AOB \cong \triangle COD [By ASA]$

OA=OC

And OB=OD [By C.P.C.T]

Also in Λ AOB and Λ COB

OA=OC [Proved]

AB=CB [sides of rhombus]

And OB=OB [Common]

 $\triangle \triangle AOB \cong \triangle COB [By SSS]$

 $\therefore \angle AOB = \angle COB$ [By C.P.C.T]

But $\angle AOB + \angle COB = 180^{\circ}$ [linear pair]

∴ ∠AOB = ∠COB = 90°

26. In fig ABCD is a trapezium in which AB | | DC and AD=BC. Show that $\angle A = \angle B$

Ans. To show that $\angle A = \angle B$,

Draw CP | | DA meeting AB at P

: AP | | DC and CP | | DA

APCD is a parallelogram

Again in 🛕 CPB

CP=CB [*.*BC=AD [Given]

 $\angle CPB = \angle CBP...(i)$ [Angles opposite to equal sides]

But $\angle CPA + \angle CPB = 180^{\circ}$ [By linear pair]

Also $\angle A + \angle CPA = 180^{\circ}$ [::APCD is a parallelogram]

 $\therefore \angle A + \angle CPA = \angle CPA + \angle CPB \text{ Or } \angle A = \angle CPB$

= <u>∠</u> CB

27. In fig ABCD and ABEF are Parallelogram, prove that CDFE is also a parallelogram.

Ans. ABCD is a parallelogram

__ AB=DC also AB | | DC....(i)

Also ABEF is a parallelogram

AB=FE and AB | | FE....(ii)

By (i) and (ii)

AB=DC=FE

__AB=FE

And AB | | DC | | FE

_ AB | | FE

CDEF is a parallelogram.

Hence Proved.

CBSE Class 9 Mathemaics Important Questions Chapter 8 Quadrilaterals

4 Marks Quetions

- 1. ABCD is a rectangle in which diagonal AC bisects \angle A as well as \angle C. Show that:
- (i) ABCD is a square.
- (ii) Diagonal BD bisects both \angle B as well as \angle D.

Ans. ABCD is a rectangle. Therefore AB = DC(i)

And BC = AD

Also
$$\angle A = \angle B = \angle C = \angle D = 90^{\circ}$$

(i) In $_{\Delta}$ ABC and $_{\Delta}$ ADC

$$\angle 1 = \angle 2$$
 and $\angle 3 = \angle 4$

[AC bisects \angle A and \angle C (given)]

AC = AC [Common]

$$\triangle$$
 ABC \cong \triangle ADC [By ASA congruency]

From eq. (i) and (ii), AB = BC = CD = AD

Hence ABCD is a square.

(ii) In \triangle ABC and \triangle ADC

AB = BA [Since ABCD is a square]

AD = DC [Since ABCD is a square]

BD = BD [Common]

 $\triangle \Delta$ ABD $\cong \Delta$ CBD [By SSS congruency]

And
$$\angle$$
 ADB = \angle CDB [By C.P.C.T.](iv)

From eq. (iii) and (iv), it is clear that diagonal BD bisects both \angle B and \angle D.

2. An \triangle ABC and \triangle DEF, AB = DE, AB || DE, BC = EF and BC || EF. Vertices A, B and C are joined to vertices D, E and F respectively (See figure). Show that:

- (i) Quadrilateral ABED is a parallelogram.
- (ii) Quadrilateral BEFC is a parallelogram.
- (iii) AD \parallel CF and AD = CF
- (iv) Quadrilateral ACFD is a parallelogram.
- (v) AC = DF
- (vi) $_{\Delta}$ ABC $_{\cong}$ $_{\Delta}$ DEF

Ans. (i) In $_{\Delta}$ ABC and $_{\Delta}$ DEF

AB = DE [Given]

And AB | DE [Given]

- ABED is a parallelogram.
- (ii) In $_{\Delta}$ ABC and $_{\Delta}$ DEF

BC = EF [Given]

And BC || EF [Given]

- BEFC is a parallelogram.
- (iii) As ABED is a parallelogram.
- __ AD || BE and AD = BE(i)

Also BEFC is a parallelogram.

__ CF || BE and CF = BE(ii)

From (i) and (ii), we get

AD | CF and AD = CF

(iv) As AD \parallel CF and AD = CF

 \Rightarrow ACFD is a parallelogram.

(v) As ACFD is a parallelogram.

 $\Delta C = DF$

(vi) In \triangle ABC and \triangle DEF,

AB = DE [Given]

BC = EF [Given]

AC = DF [Proved]

 $\triangle \triangle$ ABC $\cong \triangle$ DEF [By SSS congruency]

3. ABCD is a trapezium, in which AB \parallel DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E, parallel to AB intersecting BC at F (See figure). Show that F is the mid-point of BC.

Ans. Let diagonal BD intersect line EF at point P.

In ∆ DAB,

E is the mid-point of AD and EP | AB [EF | AB (given) P is the part of EF]

 \square P is the mid-point of other side, BD of \triangle DAB.

[A line drawn through the mid-point of one side of a triangle, parallel to another side intersects the third side at the mid-point]

Now in \triangle BCD,

P is the mid-point of BD and PF | DC [**EF | AB (given) and AB | DC (given)]

- \mathbb{L} EF \parallel DC and PF is a part of EF.
- Γ F is the mid-point of other side, BC of Δ BCD. [Converse of mid-point of theorem]
- 4. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisect each other.

Ans. Given: A quadrilateral ABCD in which EG and FH are the line-segments joining the midpoints of opposite sides of a quadrilateral.

To prove: EG and FH bisect each other.

Construction: Join AC, EF, FG, GH and HE.

Proof: In \triangle ABC, E and F are the mid-points of respective sides AB and BC.

$$\therefore$$
 EF || AC and EF $\frac{1}{2}$ AC(i)

Similarly, in Λ ADC,

G and H are the mid-points of respective sides CD and AD.

$$\therefore$$
 HG \parallel AC and HG $\frac{1}{2}$ AC(ii)

From eq. (i) and (ii),

EF || HG and EF = HG

EFGH is a parallelogram.

Since the diagonals of a parallelogram bisect each other, therefore line segments (i.e. diagonals) EG and FH (of parallelogram EFGH) bisect each other.

5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Ans. Let ABCD be a quadrilateral in which equal diagonals AC and BD bisect each other at right angle at point O.

We have AC = BD and OA = OC(i)

And OB = OD(ii)

Now OA + OC = OB + OD

 \Rightarrow OC + OC = OB + OB [Using (i) & (ii)]

⇒ 20C = 20B

⇒ OC = OB(iii)

From eq. (i), (ii) and (iii), we get, $OA = OB = OC = OD \dots (iv)$

Now in \triangle AOB and \triangle COD,

OA = OD [proved]

 \angle AOB = \angle COD [vertically opposite angles]

OB = OC [proved]

 \triangle AOB \cong \triangle DOC [By SAS congruency]

 \Rightarrow AB = DC [By C.P.C.T.](v)

Similarly, \triangle BOC \cong \triangle AOD [By SAS congruency]

⇒ BC = AD [By C.P.C.T.](vi)

From eq. (v) and (vi), it is concluded that ABCD is a parallelogram because opposite sides of a quadrilateral are equal.

Now in \triangle ABC and \triangle BAD,

AB = BA [Common]

BC = AD [proved above]

AC = BD [Given]

 \triangle ABC \cong \triangle BAD [By SSS congruency]

 \Rightarrow \angle ABC = \angle BAD [By C.P.C.T.](vii)

But \angle ABC + \angle BAD = 180° [ABCD is a parallelogram](viii)

 \therefore AD \parallel BC and AB is a transversal.

$$\Rightarrow$$
 \angle ABC + \angle ABC = 180° [Using eq. (vii) and (viii)]

$$\Rightarrow 2 \angle ABC = 180^{\circ} \Rightarrow \angle ABC = 90^{\circ}$$

$$\triangle ABC = \angle BAD = 90^{\circ}$$
(ix)

Opposite angles of a parallelogram are equal.

But
$$\angle$$
 ABC = \angle BAD =

$$\triangle ABC = \angle ADC = 90^{\circ} \dots (x)$$

$$\triangle BAD = \angle BDC = 90^{\circ} \dots (xi)$$

From eq. (x) and (xi), we get

$$\angle$$
 ABC = \angle ADC = \angle BAD = \angle BDC = 90°(xii)

Now in \triangle AOB and \triangle BOC,

OA = OC [Given]

$$\angle$$
 AOB = \angle BOC = 90° [Given]

OB = OB [Common]

$$\triangle$$
 AOB \cong \triangle COB [By SAS congruency]

From eq. (v), (vi) and (xiii), we get,

$$AB = BC = CD = AD \dots (xiv)$$

Now, from eq. (xii) and (xiv), we have a quadrilateral whose equal diagonals bisect each other at right angle.

Also sides are equal make an angle of 90° with each other.

... ABCD is a square.

6. ABCD is a trapezium in which AB \parallel CD and AD = BC (See figure). Show that:

(i)
$$\angle A = \angle B$$

(iii)
$$\triangle$$
 ABC \cong \triangle BAD

(iv) Diagonal AC = Diagonal BD

Ans. Given: ABCD is a trapezium.

AB || CD and AD = BC

To prove: (i) $\angle A = \angle B$

(iii)
$$\triangle$$
 ABC \cong \triangle BAD

Construction: Draw CE \parallel AD and extend AB to intersect CE at E.

Proof: (i) As AECD is a parallelogram. [By construction]

$$\therefore$$
 AD = EC

But AD = BC [Given]

$$BC = EC$$

 \Rightarrow $\angle 3 = \angle 4$ [Angles opposite to equal sides are equal]

Now
$$\angle 1 + \angle 4 = 180^{\circ}$$
 [Interior angles]

And
$$\angle 2 + \angle 3 = 180^{\circ}$$
 [Linear pair]

$$\Rightarrow$$
 $\angle 1 + \angle 4 = \angle 2 + \angle 3$

$$\Rightarrow \angle 1 = \angle 2 [\because \angle 3 = \angle 4]$$

$$\Rightarrow \angle A = \angle B$$

(ii) $\angle 3 = \angle C$ [Alternate interior angles]

And $\angle D = \angle 4$ [Opposite angles of a parallelogram]

But $\angle 3 = \angle 4$ [\triangle BCE is an isosceles triangle]

$$\therefore$$
 \angle C = \angle D

(iii) In \triangle ABC and \triangle BAD,

AB = AB [Common]

$$\angle 1 = \angle 2$$
 [Proved]

 \triangle ABC \cong \triangle BAD [By SAS congruency]

$$\Rightarrow$$
 AC = BD [By C.P.C.T.]

7. Prove that if the diagonals of a quadrilateral are equal and bisect each other at right angles then it is a square.

Ans. Given in a quadrilateral ABCD, AC = BD, AO = OC and BO = OD and $\angle AOB = 90^{\circ}$

To prove: ABCD is a square.

Proof: In $\triangle AOB$ and $\triangle COD$

OA=OC

OB=OD [given]

And

 $\angle AOB = \angle COD$ [vertically opposite angles]

 $\therefore \Delta AOB \cong \Delta COD \ [By SAS]$

 $AB = CD \ [By \ CPCT]$

 $\angle 1 = \angle 2$ [By CPCT] But these are alternate angles $\therefore AB \parallel CD$

ABCD is a parallelogram whose diagonals bisects each other at right angles

:. ABCD is a rhombus

Again in $\triangle ABD$ and $\triangle BCA$

AB=BC [Sides of a rhombus]

AD=AB [Sides of a rhombus]

And BD=CA [Given]

$$\therefore \Delta ABD \cong \Delta BCA$$

$$\therefore \angle BAD = \angle CBA$$
[By CPCT]

These are alternate angles of these same side of transversal

$$\therefore \angle BAD + \angle CBA = 180^{\circ} \text{ or } \angle BAD = \angle CBA = 90^{\circ}$$

Hence ABCD is a square.

8. Prove that in a triangle, the line segment joining the mid points of any two sides is parallel to the third side.

Ans. Given: A $\triangle ABC$ in which D and E are mid-points of the side AB and AC respectively

To Prove: $DE \parallel BC$

Construction: Draw $CF \parallel BA$

<u>Proof:</u> In $\triangle ADE$ and $\triangle CFE$

 $\angle 1 = \angle 2$ [Vertically opposite angles]

AE=CE [Given]

And $\angle 3 = \angle 4$ [Alternate interior angles]

 $\triangle \Delta ADE \cong \Delta CFE$ [By ASA]

... DE=FE [By C.P.C.T]

But DA = DB

$$...$$
 DB = FC

Now DB || FC

- ... DBCF is a parallelogram
- ... DE || BC

Also DE = EF =
$$\frac{1}{2}$$
 BC

9. ABCD is a rhombus and P, Q, R, and S are the mid-Points of the sides AB, BC, CD and DA respectively. Show that quadrilateral PQRS is a rectangle.

Ans. Join AC and BD which intersect at O let BD intersect RS at E and AC intersect RQ at F

IN \triangle ABD P and S are mid-points of sides AB and AD.

$$\therefore$$
 PS | | BD and PS = $\frac{1}{2}BD$

Similarly, RQ | | DB and RQ = $\frac{1}{2}$ BD

$$\therefore$$
 RS | |BD | | RQ and PS = $\frac{1}{2}BD = RQ$

PS=RQ and PS | | RQ

T. PQRS is a parallelogram

Now RF | | EO and RE | | FO

... OFRE is also a parallelogram.

Again, we know that diagonals of a rhombus bisect each other at right angles.

$$\therefore \angle EOF = \angle ERF$$
 [opposite angles of a parallelogram]

$$\angle ERF = 90^{\circ}$$

... Each angle of the parallelogram PQRS is 90°

Hence PQRS is a rectangle.

10. In the given Fig ABCD is a parallelogram E is mid-point of AB and CE bisects $\angle BCD$ Prove that:

- (i) AE = AD
- (ii) DE bisects $\angle ADC$
- (iii) $\angle DEC = 90^{\circ}$

Ans. ABCD is a parallelogram

 \therefore $AB \parallel CD$ And EC cuts them

 $\Rightarrow \angle BEC = \angle ECD$ [Alternate interior angle]

 $\Rightarrow \angle BEC = \angle ECB \ [\angle ECD = \angle ECB]$

$$\Rightarrow EB = BC$$

$$\Rightarrow AE = AD$$

(i) Now AE=AD

$$\Rightarrow \angle ADE = \angle AED$$

$$\Rightarrow \angle ADE = \angle EAC$$
 [: $\angle AED = \angle EDC$ Alternate interior angles]

- (ii) \Box DE bisects $\angle ADC$
- (iii) Now $\angle ADC + \angle BCD = 180^{\circ}$

$$\Rightarrow \frac{1}{2} \angle ADC + \frac{1}{2} \angle BCD = 90^{\circ}$$

$$\Rightarrow \angle EDC + \angle DCE = 90^{\circ}$$

But, the sum of all the angles of the triangle is 180°

$$\Rightarrow$$
 90° + $\angle DEC$ = 180°

$$\Rightarrow \angle DEC = 90^{\circ}$$

- 11. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. show that
- (i) D is mid-point of AC
- (ii) MD \(_\) AC

(iii) CM = MA =
$$\frac{1}{2}$$
 AB

Ans. Given ABC is a Δ right angle at C

(i) M is mid-point of AB

And MD | | BC

- \Box . D is mid-Point of AC [a line through midpoint of one side of a Δ parallel to another side bisect the third side.
- (ii). ∵ MD | | BC

 $\angle ADM = \angle DCB$ [Corresponding angles]

 $\angle ADM = 90^{\circ}$

(iii) In \triangle ADM and \triangle CDM

AD=DC ["." D is mid-point of AC]

DM=DM [Common]

- $\therefore \triangle ADM \cong \triangle CDM [By SAS]$
- ... AM=CM [By C.P.C.T]

AM=CM=MB [: M is mid-point of AB]

... CM=MA= $\frac{1}{2}$ AB.

